Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-Aminoacridinium nitrate monohydrate

Mehrdad Pourayoubi,^a* Hossein Eshtiagh-Hosseini,^a Somayyeh Sanaei Ataabadi,^b Teresa Mancilla Percino^c and Marco A. Leyva Ramírez^c

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, ^bDepartment of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and ^cDepartamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico

Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 6 January 2011; accepted 31 January 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.132; data-to-parameter ratio = 14.0.

The pyridine N atom of the cation in the title hydrated salt, $C_{13}H_{11}N_2^+ \cdot NO_3^- \cdot H_2O_1$, is protonated; the N atom of the NH₂ group shows a planar conformation. The former N atom is hydrogen bonded to a water molecule. The amino group is involved in three N-H···O hydrogen bonds with two neighboring nitrate anions. The water molecule is hydrogen bonded to two adjacent nitrate anions. In the crystal, this results in a layered network.

Related literature

For the structure of 9-aminoacridine hydrochloride monohydrate, see: Talacki et al. (1974). For positive-charge-assisted hydrogen bonds, see: Gilli et al. (1994).

Experimental

Crystal data	
$C_{13}H_{11}N_2^+ \cdot NO_3^- \cdot H_2O$	c = 10.5912 (3) Å
$M_r = 275.26$	$\alpha = 117.016 \ (1)^{\circ}$
Triclinic, P1	$\beta = 94.138 (1)^{\circ}$
a = 6.8556 (2) Å	$\gamma = 97.995 (1)^{\circ}$
b = 10.0532 (2) Å	V = 636.36 (3) Å ³

Z = 2Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer	8945 measured reflections
Absorption correction: multi-scan	2822 independent reflections
(Blessing, 1995)	2054 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.923, \ T_{\max} = 0.953$	$R_{\rm int} = 0.028$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ H atoms treated by a mixture of $wR(F^2) = 0.132$ S = 1.04 $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$ 2822 reflections $\Delta \rho_{\rm min} = -0.22~{\rm e}~{\rm \AA}^{-3}$ 201 parameters 5 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.93 (1)	2.23 (2)	3.0619 (17)	149 (1)
$N2-H2A\cdots O3^{i}$	0.93 (1)	2.30 (2)	3.0662 (16)	140 (1)
$N2-H2B\cdots O2^{ii}$	0.90 (1)	2.07 (1)	2.9123 (15)	157 (2)
$O4-H4A\cdots O3^{iii}$	0.91(2)	2.03 (2)	2.9147 (18)	164 (2)
$N1 - H1 \cdots O4$	0.89(1)	1.91 (1)	2.7867 (15)	170(2)
$O4-H4B\cdots O1$	0.90 (2)	2.01(2)	2.9058 (18)	173 (2)
$O4 - H4B \cdots O2$	0.90 (2)	2.64 (2)	3.2039 (19)	122 (2)

Symmetry codes: (i) x, y - 1, z - 1; (ii) -x, -y + 1, -z + 1; (iii) x + 1, y, z.

Data collection: COLLECT (Nonius, 2001); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Support of this investigation by Ferdowsi University of Mashhad and the Islamic Azad University Shahr-e-Rey Branch is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5102).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.

organic compounds

independent and constrained

refinement

 $0.75 \times 0.75 \times 0.45 \ \mathrm{mm}$

T = 293 K

supplementary materials

Acta Cryst. (2011). E67, o565 [doi:10.1107/S1600536811003953]

9-Aminoacridinium nitrate monohydrate

M. Pourayoubi, H. Eshtiagh-Hosseini, S. Sanaei Ataabadi, T. Mancilla Percino and M. A. Leyva Ramírez

Comment

In a previous work, the crystal structure of 9-aminoacridine hydrochloride monohydrate (Talacki *et al.*, 1974) has been investigated. Here, we report on the crystal structure of title hydrated salt, $C_{13}H_{11}N_2^+$.NO₃⁻.H₂O (Fig. 1).

In 9-amino-acridinium cation, the heteroatom N1 and the nitrogen atom of NH₂ unit (N2) have a sp^2 character. The C1—N1—C13 angle is 122.68 (11)°; the fused tricyclic system is essentially planar.

The protonated pyridine nitrogen atom is involving in a positive charge assisted (Gilli *et al.*, 1994) N—H···O hydrogen bond with a neighboring H₂O molecule (N1···O4 = 2.7867 (15) Å). Moreover, the water molecule forms two O—H···O hydrogen bonds (O···O = 2.9058 (18) & 2.9147 (18) Å) with two adjacent NO₃⁻ anions; also, the weak hydrogen bond O4—H4B···O2 (O4···O2 = 3.2039 (19) Å) may be considered which has not influence on the pattern of crystal packing. The NH₂ unit of cation cooperates in three N—H···O hydrogen bonds (N···O = 2.9123 (15), 3.0619 (17) and 3.0662 (16) Å), with two neighboring nitrate anions. Cations, anions and water molecules are hydrogen bonded in a 2-D arrangement (Fig. 2).

Experimental

The title hydrated salt was obtained fortuitously from the reaction between 9-aminoacridine and $Fe(NO_3)_3.9H_2O$ in CH₃OH as follows: To a solution of 9-aminoacridine (0.194 g, 1 mmol) in CH₃OH (5 ml), a solution of Fe(NO₃)₃.9H₂O (0.202 g, 0.5 mmol) in CH₃OH (5 ml) was added at 343 K. After 1 h stirring, the solid was filtered; the crystals were obtained from methanolic solution after a slow evaporation at room temperature.

Refinement

The hydrogen atom of NH group and those of water molecule were found in difference Fourier synthesis. The NH H atoms were restrained to 0.90 A and the refinement give good values. The H atoms in the water molecule were refined with a restraint of 1.00 A for a ideal distance OH and obtained acceptable values. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with the $U_{iso}(H)$ parameters equal to 1.2 $U_{eq}(Ci)$, for methyl groups equal to 1.5 $U_{eq}(Ci)$, where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Figures

Fig. 1. Molecular view with the atom labeling scheme, displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Partial packing of cations, anions and water molecules in the title hydrated salt. H bonds are shown as dashed lines.

9-Aminoacridinium nitrate monohydrate

Crystal data

$C_{13}H_{11}N_2^+ \cdot NO_3^- \cdot H_2O$	Z = 2
$M_r = 275.26$	F(000) = 288
Triclinic, PT	$D_{\rm x} = 1.437 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.8556 (2) Å	Cell parameters from 600 reflections
b = 10.0532 (2) Å	$\theta = 1 - 14^{\circ}$
c = 10.5912 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 117.016 \ (1)^{\circ}$	T = 293 K
$\beta = 94.138 \ (1)^{\circ}$	Block, colourless
$\gamma = 97.995 \ (1)^{\circ}$	$0.75\times0.75\times0.45~mm$
$V = 636.36(3) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	2822 independent reflections
Radiation source: fine-focus sealed tube	2054 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
CCD rotation images, thick slices scans	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -8 \rightarrow 8$
$T_{\min} = 0.923, \ T_{\max} = 0.953$	$k = -12 \rightarrow 13$
8945 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.132$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0799P)^2 + 0.0299P]$ where $P = (F_0^2 + 2F_c^2)/3$
2822 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
201 parameters	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
5 restraints	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

										.2	
Fractional	atomic	coordinates	and isotro	nic or i	pauivalent	isotronic	• disr	lacement	narameters	(Ų)
1 / actionat	aiomic	coordinates	and ison		guivaieni	isonopie	ausp	nacement	parameters	()	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.28645 (17)	0.69390 (14)	0.48088 (14)	0.0392 (3)
C2	0.3072 (2)	0.82982 (15)	0.46976 (16)	0.0491 (3)
H2	0.3418	0.9237	0.5518	0.059*
C3	0.2764 (2)	0.82263 (16)	0.33871 (17)	0.0548 (4)
H3	0.2900	0.9123	0.3317	0.066*
C4	0.2245 (2)	0.68227 (17)	0.21357 (17)	0.0545 (4)
H4	0.2054	0.6794	0.1245	0.065*
C5	0.20191 (19)	0.54989 (15)	0.22257 (14)	0.0456 (3)
Н5	0.1663	0.4572	0.1393	0.055*
C6	0.23215 (17)	0.55232 (13)	0.35736 (13)	0.0377 (3)
C7	0.20689 (17)	0.41608 (13)	0.37264 (13)	0.0368 (3)
C8	0.23830 (16)	0.43023 (13)	0.51410 (13)	0.0369 (3)
C9	0.21635 (19)	0.30332 (15)	0.54077 (15)	0.0438 (3)
Н9	0.1779	0.2057	0.4642	0.053*
C10	0.2506 (2)	0.32195 (17)	0.67683 (16)	0.0513 (4)
H10	0.2353	0.2375	0.6924	0.062*
C11	0.3088 (2)	0.46790 (18)	0.79260 (16)	0.0554 (4)

supplementary materials

H11	0.3326	0.4797	0.8850	0.066*
C12	0.3312 (2)	0.59339 (17)	0.77252 (14)	0.0512 (4)
H12	0.3695	0.6900	0.8507	0.061*
C13	0.29601 (17)	0.57631 (14)	0.63302 (13)	0.0393 (3)
N1	0.31813 (16)	0.70224 (12)	0.61313 (12)	0.0437 (3)
N2	0.15562 (19)	0.28113 (13)	0.25875 (12)	0.0507 (3)
N3	0.0612 (2)	1.10579 (12)	0.88933 (12)	0.0521 (3)
O1	0.22383 (17)	1.19337 (12)	0.95048 (12)	0.0721 (4)
O2	0.04483 (18)	1.00530 (11)	0.76309 (11)	0.0674 (3)
03	-0.08334 (18)	1.12104 (15)	0.95548 (12)	0.0739 (4)
O4	0.4979 (2)	0.98619 (13)	0.83821 (14)	0.0775 (4)
H1	0.361 (2)	0.7928 (17)	0.6889 (16)	0.062 (5)*
H2A	0.133 (2)	0.2695 (19)	0.1668 (16)	0.061 (4)*
H2B	0.126 (2)	0.1971 (17)	0.2686 (18)	0.067 (5)*
H4A	0.626 (2)	1.017 (2)	0.883 (2)	0.094 (7)*
H4B	0.422 (3)	1.057 (2)	0.875 (2)	0.098 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0320 (6)	0.0385 (6)	0.0459 (7)	0.0080 (5)	0.0077 (5)	0.0183 (6)
C2	0.0462 (7)	0.0360 (6)	0.0613 (9)	0.0068 (5)	0.0078 (6)	0.0200 (6)
C3	0.0529 (8)	0.0489 (8)	0.0750 (10)	0.0128 (6)	0.0108 (7)	0.0386 (8)
C4	0.0580 (8)	0.0612 (9)	0.0577 (9)	0.0190 (7)	0.0121 (6)	0.0369 (8)
C5	0.0480 (7)	0.0453 (7)	0.0441 (7)	0.0138 (6)	0.0073 (5)	0.0202 (6)
C6	0.0321 (6)	0.0383 (6)	0.0432 (7)	0.0097 (5)	0.0083 (5)	0.0183 (6)
C7	0.0315 (6)	0.0356 (6)	0.0398 (7)	0.0079 (5)	0.0061 (5)	0.0142 (5)
C8	0.0288 (6)	0.0407 (7)	0.0418 (7)	0.0092 (5)	0.0076 (5)	0.0189 (6)
C9	0.0407 (7)	0.0435 (7)	0.0495 (7)	0.0097 (5)	0.0093 (5)	0.0229 (6)
C10	0.0475 (7)	0.0610 (9)	0.0605 (9)	0.0167 (6)	0.0154 (6)	0.0387 (8)
C11	0.0543 (8)	0.0750 (10)	0.0448 (8)	0.0185 (7)	0.0128 (6)	0.0325 (8)
C12	0.0494 (8)	0.0565 (8)	0.0390 (7)	0.0103 (6)	0.0078 (6)	0.0148 (6)
C13	0.0326 (6)	0.0428 (7)	0.0399 (7)	0.0084 (5)	0.0077 (5)	0.0166 (6)
N1	0.0450 (6)	0.0353 (6)	0.0412 (6)	0.0056 (5)	0.0052 (5)	0.0107 (5)
N2	0.0694 (8)	0.0356 (6)	0.0397 (6)	0.0073 (5)	0.0013 (5)	0.0133 (5)
N3	0.0707 (8)	0.0388 (6)	0.0428 (6)	0.0083 (6)	-0.0041 (6)	0.0182 (5)
01	0.0757 (8)	0.0523 (6)	0.0587 (7)	-0.0043 (6)	-0.0034 (6)	0.0076 (5)
O2	0.0965 (8)	0.0445 (6)	0.0431 (6)	0.0017 (5)	-0.0006 (5)	0.0100 (5)
O3	0.0681 (7)	0.0950 (9)	0.0604 (7)	0.0244 (6)	0.0096 (6)	0.0358 (7)
O4	0.0701 (8)	0.0541 (7)	0.0758 (8)	0.0067 (6)	-0.0002 (6)	0.0060 (6)

Geometric parameters (Å, °)

C1—N1	1.3641 (18)	С9—Н9	0.9300
C1—C6	1.4024 (18)	C10-C11	1.396 (2)
C1—C2	1.4127 (18)	C10—H10	0.9300
C2—C3	1.356 (2)	C11—C12	1.362 (2)
С2—Н2	0.9300	C11—H11	0.9300
C3—C4	1.403 (2)	C12—C13	1.4061 (19)

С3—Н3	0.9300	C12—H12	0.9300
C4—C5	1.3654 (19)	C13—N1	1.3650 (17)
C4—H4	0.9300	N1—H1	0.887 (14)
C5—C6	1.4163 (18)	N2—H2A	0.925 (14)
С5—Н5	0.9300	N2—H2B	0.895 (14)
C6—C7	1.4393 (17)	N3—O2	1.2411 (15)
C7—N2	1.3186 (16)	N3—O1	1.2417 (16)
С7—С8	1.4361 (17)	N3—O3	1.2417 (17)
C8—C13	1.4091 (18)	O4—H4A	0.909 (16)
C8—C9	1.4178 (17)	O4—H4B	0.901 (16)
C9—C10	1.364 (2)		
N1—C1—C6	120.53 (11)	С10—С9—Н9	119.4
N1—C1—C2	119.19 (12)	С8—С9—Н9	119.4
C6—C1—C2	120.28 (12)	C9—C10—C11	119.94 (13)
$C_{3}-C_{2}-C_{1}$	119.60 (13)	C9—C10—H10	120.0
C3—C2—H2	120.2	C11—C10—H10	120.0
C1-C2-H2	120.2	C12-C11-C10	121 11 (13)
$C_2 - C_3 - C_4$	121.12(13)	C12—C11—H11	119.4
C2-C3-H3	119.4	C10-C11-H11	119.4
C4—C3—H3	119.1	$C_{11} - C_{12} - C_{13}$	119.71 (13)
C_{5}^{-} C_{4}^{-} C_{3}^{-}	120.01 (13)	$C_{11} = C_{12} = C_{13}$	120.1
$C_5 - C_4 - H_4$	120.01 (13)	C13 - C12 - H12	120.1
$C_3 - C_4 - H_4$	120.0	N1 - C13 - C12	119 63 (12)
C4-C5-C6	120.69 (13)	N1 - C13 - C8	120.00(12)
C4-C5-H5	119.7	$C_{12} - C_{13} - C_{8}$	120.00(11) 120.37(12)
C6_C5_H5	119.7	$C1_{12} C1_{23} C1_{23}$	120.57(12)
C1 - C6 - C5	119.7	C1 - N1 - H1	118.7(11)
C1 - C6 - C7	118.91 (11)	C13—N1—H1	118.6 (11)
C_{5}	122 78 (11)	$C7_N2_H2A$	122.2(10)
$N_{2}^{2} = C_{1}^{2} = C_{1}^{2}$	120.83 (11)	C7 - N2 - H2R	122.2(10) 120.4(11)
$N_{2} = C_{7} = C_{6}$	120.03(11) 120.48(11)	$H_2 = H_2 = H_2 B$	116.9 (16)
C_{8} C_{7} C_{6}	118 70 (11)	02 - N3 - 01	119 79 (14)
C_{13} C_{8} C_{9}	117.72 (11)	02 - N3 - 03	120.94 (13)
$C_{13}^{}C_{8}^{}C_{7}^{}$	119.16 (11)	01 - N3 - 03	120.94(13) 110.27(12)
$C_{13} = C_{3} = C_{7}$	123 11 (11)	$H_{A} = 0_{A} = H_{A}$	119.27(12) 114(2)
$C_{10} - C_{9} - C_{8}$	123.11(11) 121.15(13)		114 (2)
	121.15 (13)	N2 C7 C9 C0	0.21 (10)
$N_1 = C_1 = C_2 = C_3$	1/9.80(12) 0.71(10)	$N_2 - C_7 - C_8 - C_9$	-0.21(19)
$C_0 = C_1 = C_2 = C_3$	-0.71(19)	$C_0 - C_7 - C_8 - C_9$	1/9.70(10)
$C_1 = C_2 = C_3 = C_4$	-0.1(2)	$C_{13} = C_{8} = C_{9} = C_{10}$	-0.24(18)
$C_2 = C_3 = C_4 = C_5$	0.7(2)	$C^{2} = C^{2} = C^{10}$	0.1.(2)
$C_{3} - C_{4} - C_{5} - C_{6}$	-0.0(2)	$C_{0} = C_{0} = C_{10} = C_{11}$	-0.1(2)
NI = CI = C6 = C5	-1/9./1(11)	$C_{9} = C_{10} = C_{11} = C_{12}$	0.4(2)
12 - 1 - 10 - 13	0.0/(1/)	C_{10} $-C_{11}$ $-C_{12}$ $-C_{13}$ C_{13} C_{12} C_{12} N_{13}	-0.2(2)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	1.12 (17)	$C_{11} = C_{12} = C_{13} = N_1$	1/9.8/(12)
$C_2 - C_1 - C_0 - C_1$	-1/8.51(10)	$C_{11} - C_{12} - C_{13} - C_{8}$	-0.1(2)
	-0.23(19)	$C_{2} = C_{3} = C_{12} = N_{1}$	-1/9.64(10)
U4 - U5 - U6 - U7	1/8.91 (11)	U = U = U = U = U = U = U = U = U = U =	1.09 (17)
C1—C6—C/—N2	1/9.90 (11)	C9—C8—C13—C12	0.38 (17)

supplementary materials

C5—C6—C7—N2 C1—C6—C7—C8 C5—C6—C7—C8 N2—C7—C8—C13 C6—C7—C8—C13	0.77 (19) -0.01 (16) -179.14 (11) 179.02 (11) -1.08 (16)	C7—C8—C13—C12 C6—C1—N1—C13 C2—C1—N1—C13 C12—C13—N1—C1 C8—C13—N1—C1		-178.89 (11) -1.16 (18) 178.27 (10) -179.99 (11) 0.03 (18)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2A····O1 ⁱ	0.93 (1)	2.23 (2)	3.0619 (17)	149.(1)
N2—H2A···O3 ⁱ	0.93 (1)	2.30 (2)	3.0662 (16)	140.(1)
N2—H2B····O2 ⁱⁱ	0.90(1)	2.07 (1)	2.9123 (15)	157.(2)
O4—H4A···O3 ⁱⁱⁱ	0.91 (2)	2.03 (2)	2.9147 (18)	164.(2)
N1—H1…O4	0.89(1)	1.91 (1)	2.7867 (15)	170.(2)
O4—H4B…O1	0.90 (2)	2.01 (2)	2.9058 (18)	173 (2)
O4—H4B…O2	0.90 (2)	2.64 (2)	3.2039 (19)	122.(2)
Symmetry codes: (i) $x, y-1, z-1$; (ii) $-x, -y+1, -z+1$; (iii) $x+1, y, z$.				

